A Novel Method to Study Bottom-up Visual Saliency and its Neural Mechanism

نویسندگان

  • Cheng Chen
  • Xilin Zhang
  • Yizhou Wang
  • Fang Fang
چکیده

In this study, we propose a novel method to measure bottom-up saliency maps of natural images. In order to eliminate the influence of top-down signals, backward masking is used to make stimuli (natural images) subjectively invisible to subjects, however, the bottom-up saliency can still orient the subjects attention. To measure this orientation/attention effect, we adopt the cueing effect paradigm by deploying discrimination tasks at each location of an image, and measure the discrimination performance variation across the image as the attentional effect of the bottom-up saliency. Such attentional effects are combined to construct a final bottomup saliency map. Based on the proposed method, we introduce a new bottom-up saliency map dataset of natural images to benchmark computational models. We compare several state-of-the-art saliency models on the dataset. Moreover, the proposed paradigm is applied to investigate the neural basis of the bottom-up visual saliency map by analyzing psychophysical and fMRI experimental results. Our findings suggest that the bottom-up saliency maps of natural images are constructed in V1. It provides a strong scientific evidence to resolve the long standing dispute in neuroscience about where the bottom-up saliency map is constructed in human brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

A Novel Approach to Background Subtraction Using Visual Saliency Map

Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

Visual Attention Model Based on Statistical Properties of Neuron Responses

Visual attention is a mechanism of the visual system that can select relevant objects from a specific scene. Interactions among neurons in multiple cortical areas are considered to be involved in attentional allocation. However, the characteristics of the encoded features and neuron responses in those attention related cortices are indefinite. Therefore, further investigations carried out in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.08426  شماره 

صفحات  -

تاریخ انتشار 2016